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OUTLINE:

* Brief discussion of IPET findings & risk methodology
* Development of Surge Potential and Storm Ranking
« Characteristics of strong hurricanes in Gulf of Mexico
- tracks
- decay during approach to land
- interrelationships among parameters
- Statistical estimates for risk
- multivariate probability space
- single site versus area probabilities
- return periods of Cp at landfall
 Climatic variability??
 Where we are & Future directions



Some Key IPET findings:

1. Wind fields are of primary importance to accuracy
of surge estimates (PBL model + data).

2. Wave contributions to surge could not be neglected
or treated within a simplified “surge-model-only”
approach.

3. Hurricane Protection System must be a functioning
system and not a disjoint set of structures.

4. Risk must be assessed probabilistically
5. Structural response must be treated via careful

physics-based approach rather than empirical/
parametric methods.
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RECENT EXPERIENCE:

IPET — Joint Probability Method (spatial sampling)

18000 storms reduced to only 2000 rough scale
and later to only about 600 fine scale runs
but details were very crude

EST/FEMA (local data + some smoothing of large storms)

Sampling size is such that 100-year values are
questionable for hurricanes.

Should length of record be only factor considered
in plotting position for determining CDF?

Given recognized climatic variability and horrible
sampling prior to 1940’s, why should earlier
data be included? This distorts the actual
frequency of events from today’s data. This
might “help” in Katrina direct-hit area but
will lead to severe under-prediction of
present risk in other areas.



Example of Recent ADCIRC runs for New Orleans Area

Figure shows points saved that will be discussed highlighted in yellow.



LOG Return Period Plot of ADCIRC Results

Point 1 (Lake Ponchartrain) — 2005 Hurricanes Removed
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Results from FEMA simulations before 2005 storms are
added show that Katrina may be a rare event for Lake Pontchartrain



LOG Return Period Plot of ADCIRC Results

Point 3 (St Bernard Parish) — 2005 Hurricanes Removed
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Results from FEMA simulations before 2005 storms are
added show that Katrina may be a rare event for St Bernard Parish



LOG Return Period Plot of ADCIRC Results

Point 6 (Plagquemines Parish) — 2005 Hurricanes Removed
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Results from FEMA simulations before 2005 storms are
added show that Katrina may be a rare event for Plaquemines Parish



NOTE: In NOAA's
New landfalling plot
They list Katrina as

A Category 5 storm Fecgmln
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Characterization of Potential Surge Levels
In Hurricanes:
Beyond the Saffir-Simpson Scale

» Use calibrated ADCIRC with validated estimates of wind
speeds

» Develop functional relationships that include effects of
wind speed, storm size, forward speed of storm,
characteristic slope of nearshore/slope region, and distance
between site and location of peak surge

« Develop understanding of relationships between offshore
hurricane characteristics and landfall characteristics



Storm Surge Characterization

Model Setup

NOTE: High wind behavior appears to be
* ADCIRC equivalent to constant momentum flux —
 Finite element This has critical implications for surges

 \Variable resolution: 100-m at shoreline
« Calibration: using IPET configuration
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HRD 2005 Analysis of Dennis, Katrina, Rita and Wilma
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Figure 1. TC96 Maximum 1-minute wind (kts) solution compared with HWind 1-min

maximum wind (kts) vs. pressure drop (mb)

Constant Holland “B” seems ok for first

Approximation.
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1-min max to 30-min average
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Storm Surge Characterization
Ongoing Work: Shoreline Features
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Peak surge ~ 10% larger in
area with coastal shape as
shown here.



Cat. 2 Candidate Track Map

So where’s the pattern in this?
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Tracks of all “major” (Cp in Gulf <955 mb) storms landfalling in Gulf of Mexico
1941-2005.



Frame 001 | 26 May 2006 |

HURRICANE TRACKS
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coast of Florida storms and will Longitude

be under influence of westerlies

Given that there are only 6-9 strong storms in the entire
record, isn’t cutting this into 18000 slices for the JPM
cutting the sample a bit thin?



TWO PRIMARY “OVER-WATER” ROUTES INTO THE
GULF OF MEXICO

Frame 001 | 26 May 2006 |
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NOTE: These storms are not as curved as weaker storms since they are less controlled
by extratropical influences. Also, statistics will likely be Gulf specific.
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4 Gumbel plot suggests
35F that, out of set of 22
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Frame 001 | 22 Jun 2006 |

Gumbel fit out to 10000 years
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Solving for the inverse GEV function such that the limit is equal to the MPI value
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Generalized GEV form givenby . _p +b1(1_bebﬁj




Frame 001 | 22 Jun 2006 |
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Same as previous derivation except that curve is only shown out to 1000 years.



We have shown that as a good approximation the peak surge can be written in
Terms of a set a 4 parameters, holding the Holland “B” term constant, at least
for relative ranking:

Up:CD(ApaR Vfaaf)

max ?

where ¢; is the track angle relative to the coast. The probability of 77, is

p(7,) = || (AP, R V. )10, = D(AD, R, V¢, )]dAPdR ., AV, da,

where O[x] is the Dirac delta function {o[x]=1 for x=0; =0 otherwise.
For a narrow distribution of track angles we can approximate this

with a fixed angle and remove the integration over o,

p(np) = j'[ p(Ap9 Rmax 9Vf )5[T7p o (D(Ap, Rmax 9Vf > C—Zf )dAdemadef

We need to examine the characteristics of the multivariate distribution here.



Frame 001 | 05 Jun 2006 |

40
30 -
it |
b -
& B
w 20 n
= i | " u EE =
S [ = .
& - | B s m J
o
= | n
10 =m s Wl
: - [ | - .... [ | ..- [ |
[ | | | I ] [ |
B [ |
0 I [ I R [ [N NN N AT TR SO AN NN TN N N MR
900 920 940 960 980
Cp (mb)

Forward speed of storm appears independent of Cp



Frame 001 | 05 Jun 2006 |
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Given the form of the relationship, it is advisable to use a conditional

probability relationship for R to capture its dependence on Ap, 1.e.

p(np) — J’I p(RmaX | Apﬂvf )5[77p o CD(AF)? Rmax 9Vf 7§f )dAdemadef



Now we need to relate the surges at a fixed point to the distribution
of maximum surges along a line.

The relationship between the local distribution of surges at a specific location, P(77)
and the joint probability of peak surges from an event and the alongshore distribution of the surges, p(7,,x)

is given by

p(7) = || P(2,,X)ST7 =/ (77,., )]dxdl

Where y(n_,x) is a spatial operator that relates the distribution of surge heights along the coast to the
surge heighfs at a given location, x.

is the Dirac delta function, in which z is just an arbitrary real argument, §(z) = 0 for z#0; and =1 for z=0.
This function is related to the Heaviside function via the relationship

H(z) =j5(z)dx

is the Dirac delta function, in which z is just an arbitrary real argument,
which is related to the Heaviside function via the relationship, H(z) = 0 for z<0; = 1 for z>0.
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The nondimensional surge has an even more consistent shape as a function

of nondimensional distance from the location of peak surge x/R_ ., for moderate
storm sizes.



The definition of an equivalent time for an event of size n to occur at a specific site
versus the same an event anywhere in the domain is given by the relationship

_ Tr(17)
e TR(np)

For a Gumbel Distribution we have the classic double exponential form governed by

F)=e<"; p(h) :%2’7)

where
1 —3a,
al

n=

The 3-parameter distribution can be estimated via the generalized transform

1—e ™™

ﬁ:bo+b1

2



Frame 001 | 23 Jun 2006 |

Value if all major storms

/trike New Orleans.
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Interpretation: The largest 100-year surge within the entire 600 nm length of coast
Included in this analysis would represent a 300-year surge at a fixed location- if the
area is considered homogeneous.



Question of spatial homogeneity?
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Subdividing time indicates that both frequency and intensity of storms increases
During favorable years versus unfavorable years.



Some preliminary findings:

Angle range is probably much smaller than assumed in JPM

Forward velocity of around 11 knots should suffice to
represent storm surge for most of this area

Curvature is fairly small for large storms

This leaves only Rmax and Cp as the primary variables —
along with decay during approach to coast and
proper specification of wind field and waves

Rmax and Cp cannot be treated as independent

For a specified risk level, selection of appropriate Rmax-Cp
combinations may yield a sensible screening storm set



Overall IPET Risk Methodoloav

1. Prediction of 2. Engineering Design 4. Consequence of
Storm Threat +~— Considerations Selected Design

inalize Proje
Objectives

I

Identify Hurricane
Protection System
Components

3. Response to
Storm Threat

/

System_s Inunda_tl
Analysis Mapping

Hazards ID
&
Analysis

¥ ¥

Consequence
Analysis

A

V ulnerability
Analysis

o

FProbability

Frobability

Loss

b
Risk Quantification
& Uncerainty
Analysis




RISK ASSESSMENT FINDINGS:
Accuracy of estimates depends on getting the “details” right
Storm decay during approach to coast is significant

Large storms cannot be predicted via carte blanch analysis of
all storms

Set of “screening” storms has been delivered for initial analysis
of design alternatives
FUTURE DIRECTIONS

Complete careful analysis of surge probabilities for present
system — compare to FEMA results

Complete careful analysis of surge probabilities for selected
hurricane protection systems






